Computational Analysis of Hovering Hummingbird Flight

Zongxian Liang1 and Haibo Dong2

\textit{Department of Mechanical & Materials Engineering,}
\textit{Wright State University, Dayton, OH 45435}

Mingjun Wei3

\textit{Department of Mechanical and Aerospace Engineering,}
\textit{New Mexico State University, Las Cruces, NM 88003}

Different from large-size birds, hummingbirds are found to share more common flight patterns with insects, especially in hovering motion. Comparing to hovering insects, hummingbird wing kinematics uses apparent asymmetric motions during downstroke and upstroke. In current study, we present a direct numerical simulation of modeled hummingbird wings undergoing hover flight (Tobalske et al. JEB 2007). 3D wake structures and associated aerodynamic performance are of particular interests in this paper. Computational results are also compared with PIV experiments (Warrick et al. 2005).

\textbf{NOMENCLATURE}

C_ϕ The ratio of time of downstroke to a stroke
\phi Stroke angle, deg
\phi_{m} Azimuthal amplitude, deg
\alpha_{c} Chord angle, deg
\gamma Stroke plane angle relative to the horizontal plane, deg
\beta Body angle, deg
\eta Pitching angle, deg
\theta Heaving angle, deg
T Time of a whole wing stroke, sec
\bar{U} Average tip speed, m/s
c mean chord length, m
C_L Force coefficient in y direction
C_X Force coefficient in x direction
C_Z Force coefficient in z direction

\textbf{Introduction}

Being a small-scale bird, hummingbird is found to share more common flight patterns with insects (Weis-Fogh 1972) other than large-scale birds especially in hovering motion. The Reynolds number for hummingbird hover flight ranges from 10^3 to 10^4 (Altshuler et al. 2004) and flapping frequency is about 41Hz (Tobalske et al. 2007). Thus, hummingbird is widely thought to employ aerodynamic mechanisms similar to those used by insects in spite of the differences in

1 Ph.D Student, liang.5@wright.edu .
2 Assistant Professor, AIAA Senior Member, haibo.dong@wright.edu.
3 Assistant Professor, AIAA Member, mjwei@nmsu.edu.
musculoskeletal system. Using particle image velocimetry (PIV) techniques, researchers have attempted to provide visual details into the essential of unsteady fluid dynamics of hummingbird (Warrick et al. 2005, Altshuler et al. 2009). It is found that hovering hummingbird produces 75% of total lift in downstroke and 25% in upstroke of wing motion. Whereas in insects hover flight, the lift is commonly found to be produced approximately evenly in both strokes (Dickinson et al. 1999). Moreover, leading-edge vortex (Ellington et al. 1996), which is observed in both downstroke and upstroke of insect hover flight (Dickinson et al. 1999, Sane and Dickinson 2001), however, is not seen either at the beginning or the end of the upstroke but seen in the full downstroke (Warrick et al. 2005). One explanation is that hummingbirds have higher angle of attack at mid-downstroke than during mid-upstroke and only have partially inversion of wing camber at distal portion of wing during upstroke (Warrick et al. 2005). However, it is still lack of comprehensive computational or experimental work to reveal the 3D unsteady vortex formations of this complicated motion.

In this paper, we describe a direct numerical simulation of modeled hummingbird wings undergoing hover flight based on datum from Tobalske et al. 2007, to investigate the complete details of three-dimensional vortex topologies and associated aerodynamic performance. Results will also be compared with Warrick et al. 2005.

Results

A second-order finite-difference based immersed-boundary solver (Dong et al. 2006, Mittal et al. 2008) has been developed which allows us to simulate flows with complex immersed 3-D moving bodies. The method employs a second-order central difference scheme in space and a second-order accurate fractional-step method for time advancement. Code validations and details of numerical methodologies can be found in Mittal et al. 2008.

In this section, a sequence of numerical simulations that explore the wake structures and associated aerodynamic performance of modeled hummingbird wings in hovering flight are presented. Model configuration and kinematics (Tobalske et al. 2007) approach are discussed first. Following this, the wake topology due to prescribed kinematics and aerodynamic force production are examined.

A. Wing Configuration and Prescribed Wing Kinematics

![Figure 1](image.png)

Figure 1: (a): wing shape outline; (b): sketch of chord angle from lateral view, where dash-dot line is lateral midline of hummingbird body, solid line is stroke plane, and the dot-head solid line is wing chord during downstroke; (c): coordinate system for controlling wing motions, where XY-plane is stroke plane.

A half elliptic wing analogical to hummingbird wing as shown in Figure 1(a) is employed.
in this paper. Wing aspect-ratio is 9.1, which is comparable to average hummingbird wing aspect-ratio 9 (Tobalske et al. 2007). The pitching axis is through quarter chord and perpendicular to minor axis of the wing as shown in Figure 1(c).

Simplified kinematics described in Tobalske et al. 2007 for hover flight was implemented and controlled by the parameters in Figure 1(b) and 1(c). Especially, the stroke angle is defined as

\[
\phi(t) = \begin{cases}
\phi_m \cos\left(\frac{\pi t}{C_\phi T}\right) & \text{downstroke} \\
\phi_m \cos\left(\frac{t/T - C_\phi + 1}{1 - C_\phi}\right) & \text{upstroke}
\end{cases}
\]

where \(\phi_m = 54.5^\circ\) is the azimuthal amplitude, \(C_\phi = 0.48\) is the ratio of the time spending in downstroke to that of a full stroke.

Following the definitions in Tobalske et al. 2007, stroke plane angle and body angle relative to the horizontal plane are \(\gamma\) and \(\beta\) (Figure 1), respectively. Chord angle \(\alpha_c\) is reconstructed from the first eight terms of Fourier series of chord angle curve (Tobalske et al. 2007) in the form of

\[
\alpha_c = \sum_{k=1}^{8} a(k) \cos\left(2\pi k t\right) + b(k) \sin\left(2\pi k t\right)
\]

Where \(a(k)\) and \(b(k)\) are Fourier coefficients. As shown in Figure 1(b), pitching angle in laboratory coordinate system is defined as \(\alpha_c + \gamma + \beta\).

The Reynolds number was defined as \(\text{Re} = \frac{\bar{U}c}{\nu}\) (with average tip speed \(\bar{U}\), mean chord length \(c\), and kinematic viscosity \(\nu\) of the fluid). In the simulation, Re number is set to 3000. Strouhal number, \(\text{St} = \frac{fA}{\bar{U}}\) (Taylor et al. 2003), which is based on wingtip excursion \(A\) (\(A = b \sin \phi_m\), where \(b\) is span), wing stroke frequency, and average tip speed, is 0.214 for this hover flight.

The Reynolds number was defined as \(\text{Re} = \frac{\bar{U}c}{\nu}\) (with average tip speed \(\bar{U}\), mean chord length \(c\), and kinematic viscosity \(\nu\) of the fluid). In the simulation, Re number is set to 3000. Strouhal number, \(\text{St} = \frac{fA}{\bar{U}}\) (Taylor et al. 2003), which is based on wingtip excursion \(A\) (\(A = b \sin \phi_m\), where \(b\) is span), wing stroke frequency, and average tip speed, is 0.214 for this hover flight.

The wingbeat begins with downstroke then upstroke. The downstroke is nearly sinusoidal shape (Figure 2), whereas the upstroke consists of initial pitching-down rotation with translational acceleration, followed by translation with chord angle gradually decreasing, and finally pitching-up rotation with translational deceleration. Based on domain independence studies and grid size independent studies, a domain size of \(30 \times 30 \times 30\) and a \(201 \times 121 \times 237\) grid has been finally chosen for all simulations.
B. Analysis of 3D Flapping Flight

The force coefficients (defined by $C = \frac{F}{(\frac{1}{2})\rho U^2 S_{wing}}$, where S_{wing} is the wing area and F is the force) history for the fourth cycle, at which the flow field is thought to be steady, is shown in Figure 3(a) and average forces in three directions for half-stroke and entire stroke are tabulated in Table 1. It can be found in Table 1 that the amount of lift generated during downstroke is 2.95 times of that generated during upstroke. This matches with the results of Warrick et al. 2005, which concluded that the amount of lift generation in downstroke is 3 times of that in upstroke for hummingbird hover flight. Moreover, the average lift is one order of magnitude larger than the average forces in other two directions.

<table>
<thead>
<tr>
<th></th>
<th>C_L</th>
<th>C_X</th>
<th>C_Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Downstroke</td>
<td>0.932</td>
<td>0.387</td>
<td>0.273</td>
</tr>
<tr>
<td>Upstroke</td>
<td>0.316</td>
<td>-0.264</td>
<td>-0.120</td>
</tr>
<tr>
<td>Total Avg.</td>
<td>0.623</td>
<td>0.060</td>
<td>0.076</td>
</tr>
</tbody>
</table>

Figure 3(b) shows a 3-D perspective view of the wake topologies at the end of upstroke by using isosurfaces of the eigenvalue imaginary part of the velocity gradient tensor $\frac{\partial u_i}{\partial x_j}$. Two vortex rings, VR1, VR2 are circularly generated by trailing edge of the wing and the wing tip vortex during downstroke. These are similar to the discussion of Figure 9 in Altshuler et al. 2009. Strong downwash is expected to be induced by these two vertically oriented rings. Leading edge vortex (LEV), tip vortex (TPV), and trailing edge vortex (TV) are also clearly shown in the plot and connected to the vortex rings. In order to qualitatively understand the wake structures from computational results, we use two cross-section views to compare with the PIV results in Warrick et al. 2005.
Figure 4 shows two cross-sections of wake structures in Figure 3(b). Figure 4(a) is a slice cut in YZ-plane parallel to the X-axis near the root of wing and Figure 4(b) is a cross-section cut near the half-span length of wing. Comparing to Figure 2 in Warrick et al. 2005, vortices U1 and D1 in Figure 4(a) are in accordance with the vortices U and D in Warrick et al. 2005 respectively. Vortex U2 and D2 can also be found in Warrick et al. 2005. Here, vortices D1 and D2 form the downstroke vortex ring VR2 as seen in Figure 3(b). In Figure 4(b), both tip vortex (TPV) and slice of vortex ring VR2 can be found in the Figure 2 of Warrick et al. 2005.

To better understand how the leading edge vortex develops and sheds during the wing flapping, several key frames are selected at the corresponding time points marked in Figure 3(a) (P_A to P_H).

The time frame P_A and P_B are the time frames before and after the mid-downstroke. The leading edge vortex can be clearly seen at these two time frames (Figure 5(a) and Figure 5(b)). During this period, the lift coefficient keeps increasing along with the geometrical angle of attack until the stall angle is reached at 62°, where the delayed stall is stopped.

The frame P_C is the inflection point from downstroke to upstroke. After this point, the wing starts to move upward and the shed trailing edge vortex can be seen at P_D. Meanwhile, the strength of the leading edge vortex is weaken and totally diminishes at P_E. This agrees with the observation in Warrick et al. The frame P_F (t/T=0.8) is right after the mid-upstroke. The leading edge vortex begins to form again due to the increase of the geometrical angle of attack. As a result, lift coefficient begins to increase in the upstroke.

The wing begins the reversal rotation again at P_F. This causes local minimum point between P_F and P_G in the lift coefficient curve as shown in Figure 3(a). The continuously enhancing leading edge vortex delayed the stall (Figure 6) but finally the stall dominates the tendency of the curve until the wings are almost perpendicular in laboratory coordinate system and next downstroke is about to begin.

Summary

A direct numerical simulation has been conducted to investigate wake structures of hummingbird hovering flight and associated aerodynamic performance. It's found that the amount
of lift produced during downstroke is about 2.95 times of that produced in upstroke. Two parallel vortex rings are formed at the end of the upstrokes. There is no obvious leading edge vortex can be observed at the beginning of the upstroke. Results are in good agreement with PIV experiments in Warrick et al. 2005 and Altshuler et al. 2009.

Figure 5. Slice views of iso-surface for 6 frames, following time sequence

American Institute of Aeronautics and Astronautics
Acknowledgement

This work is supported under DAGSI Student Fellowship and Wright State University Research Challenge grant.

References

13Poelma C., Dickson, W.B. and Dickinson, M. H. (2006), Time-resolved reconstruction of the full velocity field around a dynamically-scaled flapping wing, Experiments in Fluids, 41: 213-225.